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ABSTRACT

 A research program is under way at the Idaho National Laboratory to assess the 
performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen 
production over a temperature range of 800 to 900ºC. The research program includes both 
experimental and modeling activities.  Selected results from both activities are presented in 
this paper.  Experimental results were obtained from a ten-cell planar electrolysis stack, 
fabricated by Ceramatec1, Inc.  The electrolysis cells are electrolyte-supported, with scandia-
stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and 
manganite air-side electrodes.  The metallic interconnect plates are fabricated from ferritic 
stainless steel.  The experiments were performed over a range of steam inlet mole fractions 
(0.1 – 0.6), gas flow rates (1000 – 4000 sccm), and current densities (0 to 0.38 A/cm2).    
Hydrogen production rates up to 90 Normal liters per hour were demonstrated.  Stack 
performance is shown to be dependent on inlet steam flow rate. A three-dimensional 
computational fluid dynamics (CFD) model was also created to model high-temperature steam 
electrolysis in a planar solid oxide electrolysis cell (SOEC).  The model represents a single cell 
as it would exist in the experimental electrolysis stack.  Mass, momentum, energy, and species 
conservation and transport are provided via the core features of the commercial CFD code 
FLUENT1.  A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss 
mechanisms and computation of the electric field throughout the cell.  The FLUENT SOFC 
user-defined subroutine was modified for this work to allow for operation in the SOEC mode.  
Model results provide detailed profiles of temperature, Nernst potential, operating potential, 
anode-side gas composition, cathode-side gas composition, current density and hydrogen 
production over a range of stack operating conditions.  Mean model results are shown to 
compare favorably with the experimental results obtained from the ten-cell stack tested at INL. 

INTRODUCTION

 Currently there is strong interest in the large-scale production of hydrogen as a 
secondary energy carrier for the non-electrical market. Hydrogen is of particular interest as a 
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secondary energy carrier because it has the potential to be storable, transportable, and 
environmentally benign.  Hydrogen is now produced primarily via steam reforming of methane.  
From a long-term perspective, methane reforming is not a viable process for large-scale 
production of hydrogen as a major energy carrier since such fossil fuel conversion processes 
consume non-renewable resources and emit greenhouse gases to the environment.  
Consequently, there is a high level of interest in production of hydrogen from water splitting via 
either thermochemical or electrolytic processes (e.g., National Research Council, 2004). 

 High-temperature nuclear reactors have the potential for substantially increasing the 
efficiency of hydrogen production from water splitting, with no consumption of fossil fuels, no 
production of greenhouse gases, and no other forms of air pollution.  Thermal water-splitting 
for hydrogen production can be accomplished via high-temperature electrolysis or 
thermochemical processes, using high-temperature nuclear process heat.  In order to achieve 
competitive efficiencies, both processes require high-temperature operation (~850°C).  Thus 
these hydrogen-production technologies are tied to the development of advanced high-
temperature nuclear reactors.  High-temperature electrolytic water splitting supported by 
nuclear process heat and electricity has the potential to produce hydrogen with overall system 
efficiencies near those of the thermochemical processes (Yildiz, 2003; IAEA, 1999), but 
without the corrosive conditions of thermochemical processes and without the fossil fuel 
consumption and greenhouse gas emissions associated with hydrocarbon processes.  
Specifically, a high-temperature advanced nuclear reactor coupled with a high-efficiency high-
temperature electrolyzer could achieve a competitive thermal-to-hydrogen conversion 
efficiency of 45 to 55%. 

 A research program is under way at the Idaho National Laboratory (INL) to 
simultaneously address the technical and scale-up issues associated with the implementation 
of solid-oxide electrolysis cell technology for hydrogen production from steam.  The research 
program includes an experimental program aimed at performance characterization of 
electrolysis cells and stacks.  Results of single-cell tests have been documented in several 
recent papers (O’Brien et al., Herring et al., 2004).  Single (button) cell tests are useful for 
basic performance characterization of electrode and electrolyte materials and of different cell 
designs (e.g., electrode-supported, porous metal substrate-supported).  The single-cell results 
demonstrated efficient small-scale hydrogen production, with performance close to theoretical 
predictions.  Cell performance was shown to be continuous from the fuel-cell to the electrolysis 
mode.  The effects of steam starvation and thermal cycling on cell performance parameters 
were demonstrated.  Based on these preliminary results, high-temperature electrolysis 
appears to be a viable means for hydrogen production using nuclear energy. 

 The INL research program includes experimental, modeling and materials-
development tasks.  The experimental results presented in this paper were obtained from a 
ten-cell planar electrolysis stack fabricated by Ceramatec, Inc..  Experimental results include 
voltage-current behavior, stack area-specific resistance, hydrogen production rates, 
electrolysis efficiency, and internal stack temperature measurements over a range of operating 
conditions.  For detailed SOEC modeling, the commercial CFD code FLUENT was selected.  
Fluent Inc. was funded by the US Department of Energy National Energy Technology 
Laboratory (DOE-NETL) to develop a solid-oxide fuel cell (SOFC) module for coupling to the 
core mass, momentum, energy, and species conservation and transport features of the 
FLUENT CFD code (Prinkey et al., 2004).  The SOFC module adds the electrochemical 



reactions and loss mechanisms and computation of the electric field throughout the cell.  The 
FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the 
SOEC mode.  Model results provide detailed profiles of temperature, Nernst potential, 
operating potential, anode-side gas composition, cathode-side gas composition, current 
density and hydrogen production over a range of stack operating conditions.  Results of the 
numerical model are compared to experimental results obtained from a ten-cell stack tested at 
INL.

APPARATUS  

 A schematic of the stack-testing apparatus is presented in Fig. 1.  Primary system 
components include gas supply cylinders, gas mass-flow controllers, a humidifier, dewpoint 
measurement stations, temperature and pressure measurement, high temperature furnace, 
and a solid oxide electrolysis stack.  Nitrogen was used as an inert carrier gas.  The use of a 
carrier gas allows us to independently vary both the partial pressures and the flow rates of the 
steam and hydrogen gases while continuing to operate at atmospheric pressure.  The flow 
rates of nitrogen, hydrogen and air are established by means of precision mass-flow 
controllers (Hastings Model HFC-302, with Hastings Model 400 electronics).  Air flow to the 
stack is supplied by the laboratory shop air system, after passing through a two-stage extractor 
/ dryer unit. 

 Downstream of the mass-flow controller, nitrogen is mixed with a smaller flow of 
hydrogen gas.  Hydrogen is included in the inlet flow as a reducing gas in order to prevent 
oxidation of the nickel cermet electrode material. The nitrogen / hydrogen gas mixture is mixed 
with steam by means of a heated humidifier.  The humidifier consists of a heated stainless-
steel vessel containing demineralized / deionized water through which the nitrogen / hydrogen 
flow is bubbled.  The dewpoint temperature of the steam / hydrogen / nitrogen gas mixture 
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Figure 1:  Schematic of experimental apparatus for electrolysis stack testing. 



exiting the humidifier is monitored continuously 
using a precision dewpoint sensor (Vaisala 
Model HMP247).  The humidifier is fitted with a 
clamp heater and is externally insulated.  The 
humidifier temperature is maintained at a 
constant setpoint value using feedback control.  
Since the vapor pressure of the water and the 
resulting partial pressure of the steam exiting the 
humidifier are determined by the water bath 
temperature, the water vapor mass flow rate is 
directly proportional to the carrier gas flow rate 
for a specified bath temperature.  Also, since the 
nitrogen and hydrogen flow rates are fixed by the 
mass flow controllers, and the steam partial 
pressure is fixed by the bath temperature, the 
complete gas composition is precisely known at all times.  All gas lines located downstream of 
the humidifier are heat-traced in order to prevent steam condensation.  Gas line temperatures 
are monitored by thermocouples and controlled by means of variable transformers. 

 A close-up photograph of the test article, a 10-cell solid-oxide electrolysis stack, is 
shown in Fig. 2.  The stack was fabricated by Ceramatec, Inc. of Salt Lake City, UT.  The per-
cell active area is 64 cm2.  It is designed to operate in cross flow, with the steam / hydrogen 
gas mixture entering the inlet manifold on the right in the photograph, and exiting through the 
outlet manifold, visible on the left in the photograph.  Air flow enters at the rear though an air 
inlet manifold (not visible in Fig. 3) and exits at the front directly into the furnace.  The power 
lead attachment tabs, integral with the upper and lower interconnect separator plates are also 
visible in the photograph.  Stack operating voltages were measured using wires that were 
directly spot-welded onto these tabs.  Since the stack air outlet plane is not enclosed, the small 
air flow channels are accessible for instrumentation.  Four intermediate cell voltages were 
monitored using small-diameter wires inserted into these air flow channels.  In addition, four 
miniature thermocouples (inconel-sheathed, 0.010-inch (250 µm) OD, mineral-insulated, 
ungrounded, type-K) were inserted into the air flow channels to monitor internal stack 
temperatures.

 The internal components of the stack are shown in Fig. 3.  The interconnect plate, 
shown on the left in Fig. 3, is fabricated primarily from low-chromium ferritic stainless steel.  It 
includes an impermeable separator plate (~0.46 mm thick) with edge rails and two corrugated / 
perforated “flow fields,” one on the air side and one on the steam/hydrogen side.  The height of 
the flow channel formed by the edge rails and flow fields is 1.0 mm.  Each flow field includes 
32 perforated flow channels across its width to provide uniform gas-flow distribution.  The 
steam / hydrogen flow field (shown in Fig. 3) is fabricated from nickel foil.  The air-side flow 
field is ferritic stainless steel.  The interconnect plates and flow fields also serve as electrical 
conductors and current distributors.  To improve performance, the air-side separator plates 
and flow fields are pre-surface-treated to form a rare-earth conductive oxide scale.  A 
perovskite rare-earth coating is also applied to the separator-plate oxide scale by either screen 
printing or plasma spraying.  On the steam/hydrogen side of the separator plate, a thin (~10 
µm) nickel metal coating is applied.

Figure 2.  Detail of stack. 



 The electrolyte / electrode assembly is shown on the right of Fig. 3.  The electrolyte is 
scandia-stabilized zirconia, about 140 µm thick.  The air-side electrode (anode in the 
electrolysis mode), visible in the figure, is a strontium-doped manganite.  The electrode is 
graded, with an inner layer of manganite/ zirconia (~13 µm) immediately adjacent to the 
electrolyte, a middle layer of pure manganite (~18 µm), and an outer cobaltite bond layer.  The 
steam/ hydrogen electrode (cathode in the electrolysis mode) is also graded, with a nickel-
zirconia cermet layer (~13 µm) immediately adjacent to the electrolyte and a pure nickel outer 
layer (~10 µm).

 Measurement of the outlet dewpoint temperature, downstream of the electrolysis 
stack, allows for direct determination of the change in dewpoint, the rate of steam reduction 
and the corresponding rate of hydrogen production during electrolysis testing.  All testing was 
performed at essentially ambient laboratory pressure, about 85 kPa for our 4700 ft. elevation.

 Stack voltage and current values were controlled by means of a programmable DC 
power supply (Lambda Zup 20-40), rated for 20 V and 40 amps.  The power supply could be 
operated in either the constant-current or constant voltage modes.  This power supply was 
interfaced to the system controller computer via an RS232 interface.  Cell amperage and the 
voltage across the stack are monitored continuously.  Stack current measurements are 
obtained from the power supply, with redundant measurements provided by a precision shunt 
(50 A = 200 mV).

 Signals from all thermocouple channels, mass-flow controllers, pressure transducer, 
and stack voltage taps were wired into a modular data acquisition system (National 
Instruments Model SCXI) which was configured for this application with a 32-channel analog 
input module and an eight-channel analog output module.  The analog output module was 
used to provide control signals (4 – 20 mA) for feedback temperature control of the humidifier, 
the humidity measurement stations, and the furnace.  Data acquisition and instrument control 
were implemented for these tests using a Labview (National Instruments, version 6.1) program 
(virtual instrument) specifically created for this experiment.  Temperature control of the 
humidifier, the humidity sensing volumes, and the furnace was accomplished using customized 
PID control algorithms.

Figure 3.  Interconnect plate and single electrolysis cell. 



DATA REDUCTION 

Open-cell potentials can be predicted for any gas composition from the Nernst equation, 
which for the hydrogen / oxygen / steam system takes the form: 
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 Since we are using air as our source of oxygen, the value of yO2 at the stack inlet is 
fixed at 0.21.  In the stack configuration, potentials are usually measured across the entire 
stack, so the overall stack open-cell potential is given by: 
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where E is the single-cell open-cell potential, from Eqn. (1). 

 Inlet and outlet gas stream dewpoint temperatures were directly measured in this 
work.  Aside from the fact that the measured difference between outlet and inlet dewpoint 
temperature (dewpoint depression) is a useful indication of cell performance, measured 
dewpoints permit direct determination of inlet and outlet steam mole fractions and the 
corresponding hydrogen production rate.  From the measured dewpoint temperatures, water 
vapor pressures may be calculated from an appropriate correlation (e.g., Antoine).  The inlet 
and outlet mole fractions of steam can then be obtained from: 
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It should be noted that since the mole fraction of steam in the inlet gas flow is determined 
strictly by the dewpoint temperature, the total inlet flow rate of steam is therefore directly 
proportional to the sum of the molar flow rates of nitrogen plus hydrogen: 
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The magnitude of the total inlet steam flow rate is important in determining whether or not 
steam starvation is likely to occur during electrolysis operation. 

 The inlet mole fraction of hydrogen, yH2,i is determined by the steam mole fraction and 
the ratio of the nitrogen flow rate to the hydrogen flow rate, both of which are determined by 
the setpoint values established on the mass flow controllers: 
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Finally, the molar rates of hydrogen production and steam consumption may be determined 
from: OHH NN 22  (8) 

oOHNiHiOHiOHH yNNNNN ,22,2,2,22 . (9) 

 The molar rates of hydrogen production and steam consumption during electrolysis 
can also be predicted independently from the measured stack electrical current: 
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where Ncells is the number of cells in the stack.  The product of the electrical current and the 
number of cells is the total ionic current in the stack. 

 Since we have directly measured both inlet and outlet dewpoint temperatures, we 
have generated plots comparing hydrogen production rates based on stack current to 
hydrogen production rates based on the measured change in dewpoint over a range of stack 
current densities. 

 An important performance parameter that quantifies the ohmic losses associated with 
the operation of solid-oxide electrolysis cells is the area-specific resistance (ASR).  This 
quantity is defined as: 

i

EE
ASR OCV ;

cellA

I
i  (11) 

where E is the applied potential, EOCV is the Nernst or open-cell potential and i is the current 
density (A/cm2).

 In the electrolysis mode of operation, the electrochemical reaction is endothermic, and 
ohmic heating is always present.  At operating voltages between the open-cell potential and 
the thermal neutral voltage, the endothermic reaction heat requirement is greater in magnitude 
than the ohmic heating, and a net cooling effect prevails in the stack (O’Brien et al., 2004).  
The thermal neutral voltage, given by: 
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is 1.287 V at 800ºC, or 12.87 V for the 10-cell stack.  Beyond this operating voltage, ohmic 
heating exceeds the endothermic reaction heat requirement and a net heating effect prevails. 

NUMERICAL MODEL 

 The numerical model developed for this paper was based on the geometry of a single 
SOEC cell taken from the stack described previously.  The numerical domain extends from the 
center plane of one separator plate to the center plane of the next separator plate.  Symmetry 
boundaries are applied at the top and bottom of the model.  Representations of the numerical 



model are presented in Figure 4.  In the top left portion of Figure 4, the full model is shown to 
scale.  Since the model includes only one cell, the model geometry is quite thin in the vertical 
(z) direction.  To show more detail, the model is shown in the bottom left portion of Figure 4 
with a vertical exaggeration of 10x in the z-direction.  An exploded view with the 10x vertical 
exaggeration is shown in the right half of the figure.

 In the exploded view, the bottom element is the bottom separator plate.  Since we are 
trying to represent a unit cell extracted from a larger stack, the bottom and top separator plates 
in the numerical model are only half as thick (i.e., 0.19 mm) as the hardware separator plates.  
Therefore, the top and bottom boundaries of the numerical model represent symmetry planes 
and the boundary conditions on those faces are set accordingly.  The edge rails are shown 
attached to the bottom separator plate.  In the stack hardware, the edge rails are fabricated 
from the same material as the separator plates, but they are separate pieces. 

 The next element in the numerical model is the steam/hydrogen flow channel.  The 
flow channels are the regions in the stack between the separator plate, the edge rails and the 
electrodes in which the corrugated/perforated “flow fields” are located.  The steam/hydrogen 
flow channel has been specified as a high-porosity porous-media region with metallic nickel as 
the solid material and with anisotropic permeability, much higher in the primary flow direction 
than in the cross flow directions.  The height of the flow channel is the set by the thickness of 
the edge rails, 1.019 mm. 

 The next three layers in the numerical model are associated with the 
electrolyte/electrode assembly, as shown in the right half of Figure 4.  The FLUENT SOFC 
module treats the electrolyte as a 2-D planar element.  Therefore the electrolyte in the model 
has geometrical thickness of zero.  On either side of the electrolyte are the electrodes which 
are created with 3-D elements.  Therefore, the electrolyte/electrode assembly in the model is 
only as thick as the two electrodes.  Around the outer periphery of the electrolyte/electrode 
assembly, we have include an “insulator” with the properties of YSZ.  The insulator prevents an 
electrical short circuit between the top and bottom edge rails.  No ionic transport occurs 
through this insulator. 

 The next element in the numerical model is the air/oxygen flow channel.  It has also 
been specified as a high-porosity porous media region with ferritic stainless steel as the solid 
material and with the same anisotropic permeabilities and flow channel height used in the 
steam/hydrogen flow channel.  The top separator plate and edge rails are identical to those on 
the bottom, but the edge rails are oriented perpendicular to the bottom edge rails to allow for 
the cross flow arrangement.  The bottom separator plate in the FLUENT model serves as the 
electrical ground and the top separator plate serves as the current source. 

 Additional parameters specified in the numerical model include the electrode 
exchange current densities and several gap electrical contact resistances.  These quantities 
were determined empirically by comparing FLUENT predictions with stack performance data.  
The FLUENT model uses the electrode exchange current densities to quantify the magnitude 
of the activation overpotentials via a Butler-Volmer equation (Prinkey et al., 2004).  A radiation 
heat transfer boundary condition was applied around the periphery of the model to simulate the 
thermal conditions of our experimental stack, situated in a high-temperature electrically heated 
radiant furnace.  The edges of the numerical model are treated as a small surface in a large 



enclosure with an effective emissivity of 1.0, subjected to a radiant temperature of 1103 K, 
equal to the gas-inlet temperatures. 

 The gas flow inlets are specified in the FLUENT model as mass-flow inlets, with the 
gas inlet temperatures are set at 1103 K and the inlet gas composition determined by 
specification of the mass fraction of each component.  The gas flow rates used in the model 
were the same as those used for the experimental base case, on a per-cell basis.  For 
example, the base case for the steam/hydrogen inlet used a total inlet mass flow rate of 8.053 
x 10-6 kg/s, with nitrogen, hydrogen and steam mass fractions of 0.51, 0.0074, and 0.483, 
respectively.  The base case air flow rate was 4.33 x 10-6 kg/s.

 Details of the core mass, momentum, energy, and species conservation and transport 
features of FLUENT are documented in detail in the FLUENT user manual (FLUENT, 2004).  
Details of the electrochemical reactions, loss mechanisms, electric field computation, and 
electrode porous media constitutive relations are documented by Prinkey et al. (2004).  This 
reference also documents the treatment of species and energy sources and sinks arising from 
the electrochemistry at the electrode-electrolyte interfaces. 

RESULTS

A series of DC potential sweeps was acquired in order to characterize the performance of the 
stack over a range of operating conditions.  Each sweep was performed in the electrolysis 
mode with the furnace temperature and gas flow rates set at fixed values, but with the power 
supply programmed to vary the applied stack voltage over a range, typically from 8 to 14 volts.  
The power supply sweep rate was set at ~8 mV/s, so the duration of each sweep was about 25 
minutes.  At the gas flow rates used in the stack, the response time of the downstream 
dewpoint sensor was fast enough to provide continuous outlet dewpoint measurements during 

Figure 4.  Fluent single-cell SOEC model. 



the sweep.  These sweeps were useful for obtaining information about cell area-specific 
resistance (ASR) values and steam starvation limits.   

 Results of several representative sweeps are shown in Fig. 5 in the form of operating 
voltage versus current density.  Test conditions for each of the five experimental sweeps 
shown are tabulated in the figure.  Four of the sweeps were obtained at a furnace temperature 
of 800ºC and one at 830ºC.  Inlet dewpoint values were varied as shown.  Theoretical open-
cell potential values are also shown in the figure for each sweep using a single data point at 
zero current density.  Note that the measured open-cell potentials are in excellent agreement 
with these theoretical values for each sweep.  In additional to the experimental curves, a 
FLUENT prediction is also shown.  This prediction was obtained for the conditions of sweep 4, 
with the gap contact resistance values empirically adjusted to yield an overall area-specific 
resistance value that matches the experimentally observed value.  Additional FLUENT 
predictions of local temperatures and current densities presented later were obtained using the 
same procedure. 

 Sweep #1 was performed with a relatively low inlet steam flow rate, corresponding to 
the low inlet dewpoint value of 48.5ºC and relatively low nitrogen and hydrogen flow rates.  
This sweep has a relatively high slope on i-V coordinates, indicating a high ASR value.  This 
sweep also clearly shows the effects of steam starvation; the slope of the i-V curve increases 
dramatically as the current density is increased.  The outlet dewpoint temperature 
corresponding to the highest current density shown in this figure was only 4ºC.  Sweep #2 was 
performed at an intermediate steam concentration, with an inlet dewpoint temperature of 70ºC.  
This sweep exhibits nearly linear behavior over the range of current densities shown, with a 
much smaller slope than sweep #1.  Sweeps 3 and 4 are nearly linear at low current densities, 
then slightly concave-down at higher current densities.    Sweep #5 has a shallower slope than 

8

9

10

11

12

13

14

15

16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

st
ac

k 
op

er
at

in
g 

vo
lta

ge
, V

current density, i (A/cm2)

T
f
 (C)T

dp, i
 (C)sccm H2sccm N2sweep #

80048.520510111
80070.441120172
80083.841010173
80082.941120184
83083.241120185

1

2

3

4

5
theoretical open-cell potentials

FLUENT Prediction

Figure 5.  Stack operating potential as a function of current density.



the others, consistent with the higher operating temperature of 830ºC.  This i-V curve also 
shows more distinct concave-down characteristics at higher current densities. 

 Per-cell area-specific resistance values corresponding to the sweeps of Fig. 5 are 
presented in Fig. 6 as a function of current density.  Highest ASR values were observed for the 
cases with low steam concentrations.  Sweep #1 had ASR values near 4.5 at low current 
density, increasing rapidly for higher current densities, due to steam starvation.  Sweep #2, at 
intermediate steam concentration had an intermediate ASR value near 3.0, increasing slightly 
with increasing current density.  Sweeps 3 and 4 were similar, with ASR values near 2.5, 
decreasing slightly at high current density.  Sweep #5, at an operating temperature of 830ºC 
showed the lowest ASR value, around 2.2, decreasing significantly with increasing current 
density.

 Hydrogen production rates can be calculated directly from the stack electric current 
(Eqn. 10) and independently from the measured inlet and outlet dewpoint measurements (Eqn. 
9).  A representative plot of hydrogen production during DC potential sweep #2 is shown in Fig. 
7.  The left-hand vertical scale is in sccm and the right-hand vertical axis is in NL/hr.  The 
current-based hydrogen production rate is simply a straight line since hydrogen production is 
directly proportional to the current.  The dewpoint-based measurement shows some scatter 
associated with the instantaneous measured inlet and outlet dewpoint values.  Agreement 
between the two measurements is generally very good.  Hydrogen production rates as high as 
90 NL/hr were achieved with this stack. 

 Temperatures measured during DC potential sweep #4 are presented in Fig. 8 as a 
function of operating voltage.  Stack internal temperature measurements were obtained using 
miniature thermocouples inserted into the air flow channels.  Stack internal #1 was located in 
the center position of the center air flow channel, stack internal #2 was located along the edge 
of the center cell closest to the steam/hydrogen exit, stack internal #3 was located along the 
edge of the center cell closest to the steam/hydrogen inlet, and stack internal #4 was located 
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at the center of the top air flow channel.  The air inlet temperature is obtained from a 
thermocouple located inside the air inlet manifold.  This thermocouple is used as the process 
variable for feedback control of the furnace power.  The “furnace” temperature is obtained form 
a thermocouple located in the main part of the furnace outside of the test fixture.

 The air inlet temperature remains virtually fixed during the DC potential sweep 
because this temperature is used for feedback control to maintain a constant stack operating 
temperature.  The four internal stack thermocouples respond as expected during the sweep.  
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Figure 7.  Hydrogen production rates during DC potential sweep. 
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At voltages between the open-cell potential and the thermal neutral voltage, in the electrolysis 
mode, the stack internal temperatures are lower than the gas inlet and furnace setpoint 
temperatures because at this operating condition, the endothermic reaction heat requirement 
is greater than the ohmic heating (O’Brien et al., 2004) and there is a net cooling effect on the 
stack.  A thermal minimum point is reached at an operating voltage near 11.2 V and full 
thermal recovery is observed near the thermal neutral voltage of 12.9 V.  The magnitude of the 
stack cooling and heating effects is greatest at the center of the stack, as indicated by the 
response of internal stack temperature 1.  Internal stack temperatures 2 and 3 respond 
similarly to the center thermocouple, but with smaller amplitude, due to convective and 
radiative heat transfer effects near the edges of the stack.  Stack internal #4 is in the top air 
flow channel, so its response is also constrained by radiant heat transfer.  Note that the 
“furnace” thermocouple responds in a direction that is opposite of the stack internal 
thermocouples.  This is because the feedback control demands more furnace power when the 
stack is tending to cool off and less power when the stack is tending to heat up. Figure 8 also 
shows the mean electrolyte temperature predicted from a FLUENT simulation obtained at the 
operating conditions of sweep #4.  The trend of the mean electrolyte temperatures with respect 
to operating voltage is similar to the trend observed with the thermocouple readings.  However, 
the magnitude of the predicted temperature variation is greater than what was measured.  This 
could due to the fact that the FLUENT model, as it was configured for these calculations, does 
not include internal radiation heat transfer.  We plan to investigate this effect further in our 
future modeling efforts. 

 Contour plots representing local FLUENT results for electrolyte temperature and 
current density are presented in Figs. 9 and 10.  In these figures, the steam/hydrogen flow is 
from top to bottom and the air flow is from left to right.  Figure 9 shows electrolyte temperature 
contour plots for amperages of 10, 15, and 30 amps.  These current values correspond to 

 (a) (b) (c) 
Figure 10.  Current density (A/m2) contours on the electrolyte for currents of 10, 15, 
and 30 amps. 

 (a) (b) (c) 
Figure 9.  Temperature (K) contours on the electrolyte and insulator for currents of 10, 
15, and 30 amps. 



operating voltage regions shown on Figure 8 near the minimum electrolyte temperature (10 
amps), near thermal neutral voltage (15 amps), and in the region dominated by ohmic heating 
(30 amps).  The radiant boundary condition at 1103 K tends to hold the outside of the model at 
a higher temperature for the 10-amp case (Fig. 9 (a)), while the endothermic heat requirement 
maintains the center of the electrolyte at a lower temperature.  Minimum and maximum 
temperatures for this case are 1091 K and 1100 K respectively.  The center Fig. 9 (b) shows a 
temperature difference across the electrolyte of only one degree K, with values very near 1103 
K; this current density is very near the thermal neutral voltage.  Fig. 9 (c) shows that ohmic 
heating in the electrolyte is dominating and the thermal boundary condition is keeping the 
edges cooler than the inside.  Minimum and maximum temperatures are 1139 K and 1197 K, 
respectively, for this case.   

 Contour plots of local current density on the electrolyte are shown in Figure 10 for 10, 
15, and 30 amps.  Mean current densities for these three cases are: 0.156, 0.234, and 0.469 
A/cm2.  These plots correlate directly with local hydrogen production rates.  Since FLUENT is 
being run in electrolysis mode, the current density values are all negative and hence the blue 
values have the largest magnitudes.  Highest current density magnitudes occur near the steam 
hydrogen inlet (the top of the figures).  This corresponds to the location of the greatest steam 
concentration.  The orange areas show where the current density is lowest because the 
available steam concentration is lower. 

SUMMARY AND CONCLUSIONS 

 A research program is under way at the Idaho National Laboratory to assess the 
performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen 
production over a temperature range of 800 to 900ºC. The research program includes both 
experimental and modeling activities.  Selected results from both activities have been 
presented in this paper.  Experimental results were obtained from a ten-cell planar electrolysis 
stack, with a per-cell active area of 64 cm2, fabricated by Ceramatec, Inc.  The electrolysis 
cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), 
nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes.  The metallic 
interconnect plates are fabricated from ferritic stainless steel.  The experiments were 
performed over a range of steam inlet mole fractions (0.1 – 0.6), gas flow rates (1000 – 4000 
sccm), and current densities (0 to 0.38 A/cm2).  Steam consumption rates associated with 
electrolysis were measured directly using inlet and outlet dewpoint instrumentation.  Cell 
operating potentials and cell current were varied using a programmable power supply.  DC 
potential sweeps performed on this stack demonstrated the effects of steam flow rate on stack 
performance.  High ASR values and steam starvation were observed for the low-steam-content 
sweeps.  A per-cell ASR value of 2.2 was demonstrated for a high-steam-content DC potential 
sweep at 830ºC.  Hydrogen production rates measured by the change in dewpoint of the gas 
flows were shown to be in excellent agreement with hydrogen production rates based on stack 
current.  Hydrogen production rates up to 90 Normal liters per hour were demonstrated.  
Internal stack temperatures measured with miniature thermocouples  A stack cooling effect 
was directly observed for stack operating voltages between the open-cell potential and the 
thermal neutral voltage. 
 A three-dimensional computational fluid dynamics (CFD) model was also created to 
model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC).  
The model represents a single cell as it would exist in the experimental electrolysis stack.  



Mass, momentum, energy, and species conservation and transport are provided via the core 
features of the commercial CFD code FLUENT.  A solid-oxide fuel cell (SOFC) model adds the 
electrochemical reactions and loss mechanisms and computation of the electric field 
throughout the cell.  The FLUENT SOFC user-defined subroutine was modified for this work to 
allow for operation in the SOEC mode.  Model results provide detailed profiles of temperature, 
Nernst potential, operating potential, anode-side gas composition, cathode-side gas 
composition, current density and hydrogen production over a range of stack operating 
conditions.  Mean model results were shown to compare favorably with the experimental 
results obtained from the ten-cell stack tested at INL.  At operating voltages between the open-
cell potential and thermal neutral, electrolyte temperatures are below 1103 K.  A thermal 
minimum temperature occurs near 1.08 V.  For operating voltages above thermal neutral, 
ohmic heating dominates and resultant electrolyte temperatures rapidly increase beyond 1103 
K.  Contour plots of local electrolyte temperature and current density indicated the effects of 
heat transfer, reaction cooling/heating, and change in local gas composition.
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